Waterproofing & Chemical Protection

Wastewater Collection and Treatment

Xypex Chemical Corporation

- Founded 1969 in Vancouver, British Columbia
- Concrete Waterproofing & Protection by Crystallization
- Present in over 80 countries worldwide
- Worldwide manufacturing base in 12 locations

Leader

Number of specifications of Xypex Crystalline Technology

McGraw Hill Construction Network

Outline

- Industry Challenges
- Current Solutions
- The Nature of Concrete
- Xypex Crystalline Waterproofing Technology
- Proven Performance
- Xypex Products
- Xypex Projects

The Problems

Problems

A CAN PARTICULAR	Structures	Costs	
Primary			
Water infiltration	Manholes, joints, service line connections	Unnecessary treatment of groundwater Flow capacity issues	
Water egress	Tanks, reservoirs	Cost of water loss	
Microbial induced corrosion and sulfate attack	Manholes, pipes, turns, lifts stations, head works, digesters	Decreased service life, unplanned maintenance and rehabilitation	
Interconnected Porosity			
Cracking, poor consolidation, tie holes, constructions joints	Manholes, pipes, lift stations, head works, tanks, reservoirs,	Expensive reworking and repair Decreased service life, unplanned maintenance and rehabilitation	
Additional			
Carbonation Corrosion of reinforcing steel	Manholes, pipes, lift stations, head works, tanks, reservoirs,	Decreased service life, unplanned maintenance and rehabilitation	

XY SEX.

Key Problems and Costs

Four Phases of concrete corrosion

Phase 1	Design, construction and concrete curing	\$1
Phase 2	Corrosion initiation processes are underway, but increased damage has not yet begun	\$ 5
Phase 3	Increase in damage has just begun	\$ 25
Phase 4	Increase in corrosion is advanced with extensive damage clearly evident.	\$125

Equivalent cost of \$1 spent in Phase 1

Current Solutions

XYSEX.

Concrete Surface Protection

	Advantages	Limitations
Liners		
HDPE, PVC, PE	 Impermeable Excellent chemical resistance especially in areas where pH is lower than 3.0 Visible protection system 	 Errors in workmanship Seam failure False spark test Liners can be affected by negative side pressure One breach can affect the integrity of the entire system Expensive
Cement Based Liners		
Portland, high alumina, speciality	 Reduce inflow Structural integrity Some corrosion protection Withstand negative side pressure No VOCs 	 Physical permeability barrier Application requires expertise Specialized equipment Residual overspray material difficult to remove

Liner Problems

Spark Test

Seams

XYSEX.

Concrete Surface Protection

March 12	ADVANTAGES	LIMITATIONS	
COATINGS			
<text></text>	 Impermeable Good chemical resistance Visible protection system 	 Costly surface preparation required Installation errors leading to pin holes and thin spots No crack healing Concrete needs to be dry Limited abrasion resistance Single breach affects integrity of entire system Performance deteriorates over time Do not resist negative side vapour and liquid pressure 	
SCHARTURGENT mortars	 Easy application Inexpensive Can be applied to moist concrete 	 Significant and costly surface preparation required Limited resistance to hydrostatic pressure Can be pushed off by negative side hydrostatic pressure Limited abrasion resistance Poor crack bridging, no crack healing Limited chemical resistance "One scratch" affects integrity of entire system Performance deteriorates over time 	

Coating Problems

Negative side water pressure

Blistering

Pinholes

Limited Lifespan

Admixtures

and the second distances of the	Advantages	Limitations	
Hydrophobic admixtures	Hydrophobic admixtures		
 Long-chain fatty acids (ammonium or calcium stearate) Vegetable oils Petroleum derivatives (mineral oils, paraffin wax, bitumen emulsions) 	 Added at batch plant Low labor costs Low risk of error Water repelling Effective where no presence of hydrostatic pressure 	 Low performance under hydrostatic pressure Diminishing performance over time Not recommended by ACI for concrete under hydrostatic pressure No crack bridging or healing properties 	
Anti-microbial agents	Anti-microbial agents		
Anti-microbial agents dosed into concrete at time of batching	 Interrupts the microbial induced corrosion process Can be added to concrete 	 Provides corrosion protection only, does not stop water infiltration or ex-filtration 	

Chemical Treatment

	Advantages	Limitations
Chemical Treatment	N AT 1	
Dosing of Chemicals into sewage lines	 Attacks hydrogen sulfide generation or neutralizes surface pH Reduces odor 	 Provides corrosion protection only, does not stop water infiltration or ex-filtration Structures still need to be repaired Expensive

Repair systems

and the second	Advantages	Limitations
Injection systems		
 Epoxy Polyurethane 	 Epoxies reinstate structural integrity Polyurethanes allow movement Polyurethanes can be applied on wet concrete Effective for wider cracks 	 High cost Requires high level of application expertise Requires specialty equipment Poor aesthetics of typical injection job Complicated re-working Will not heal new cracks
Rout & Repair		
Chipping out of crack then filling with cement-based mortar	 Inexpensive Can be applied to wet or moist concrete & actively leaking cracks Moderate level of expertise required No special equipment needed 	 Not a full depth repair Will not cure future cracking Not suitable for continuously moving cracks

XYSEX.

Injection Systems Limitations

Poor aesthetics

Our System

Concrete Waterproofing by Crystallization

The Nature of Concrete

Composition & Characteristics

- Composed of a mixture of rock, sand, cement and water.
- To be workable, more water than needed for cement hydration is used.
- Excess water bleeds out and leaves a network of capillaries and pores.
- As it dries, concrete shrinks and changes volume causing micro and macro cracks.

XYPEX.

Micro Cracks

The nature of concrete can be determined by petrographic examination.

Permeability

Entrapped Void

Crack

Micro Crack

Transition Zone

Capillary Pore

1mm to 10mm

0.1mm to 3mm

<0.0001mm to 0.1mm

0.01 mm to 0.05 mm

0.0001mm to 0.001 mm

Permeable in several, different size scales.

Xypex Crystalline Technology

What is Xypex?

Coating

Admixture

Dryshake

How It Works

Calcium Hydroxide and other by-products of cement hydration

÷

Crystalline Waterproofing Chemicals Non-soluble crystalline formation permanently fixed within the concrete's pore structure

Crystalline Formation

By-products of cement hydrations

Crystalline Formation

By-products + Xypex

Crystalline Formation

Non-soluble crystalline structure

What is Xypex?

- Becomes an integral, permanent part of the concrete matrix.
- Seals concrete from the penetration of water and other liquids from both the negative and positive side, even when subjected to hydrostatic pressure.
- Heals static cracks up to 0.4 mm.
- Highly resistant to chemicals where the ph range is from
 3.0 11.0 in constant contact and 2.0 12.0 in periodic contact.
- Cannot be punctured or damaged like a liner or surface coating.
- Enhances the durability of concrete.

Additional Advantages

- Not affected by humidity, ultraviolet light and oxygen levels
- Protects from freeze thaw
- Increased compressive strength
- Reduced shrinkage cracking
- Is non-toxic
- Does not contain VOCs
- Does not produce any fumes
- Approved for use in potable water structures

Where is Xypex used?

- Hydrostatic Pressure
 - High Water Table
 - Tanks, Pools, Reservoirs, Dams
 - Tunnels
- Harsh Chemical Environments
 - Marine
 - Industry & Agriculture
 - Waste Water Collection & Treatment
 - Carbonation and Sulphate Attack
- Repair and Rehabilitation
 - Negative side after coating or membrane failure
 - Wet/Most concrete

XYPEX Xypex and Concrete Properties

Xypex will have no negative effect on

- Slump
- Set time*
- Air
- Shrinkage
- Compressive strength

*Xypex has three different Admixtures offering different set-times, including neutral-set

XYJEX.

SCMs & Other Additives

Xypex can be used in conjunction with SCMs and additives

- Fly-ash
- Slag
- Silica fume
- Set retarders
- Water reducer
- Super plasticizers
- Air-entrainers

Trial batches always recommended

Proven Performance
Independent Testing

Xypex has been extensively and successfully tested worldwide by independent laboratories

- Permeability
- Chemical Resistance
 - Acids
 - Sulfates
- Carbonation
- Compressive Strength
- Crack Sealing
- Scanning Electron Microscopy (SEM)

Wastewater Applications

Xypex Applications

New Construction – Sewage Systems

STRUCTURE	XYPEX ADMIX	XYPEX COATING
Manholes	V	V
Sewer Pipe	v /	
Pump/Lift Station	v	V
Sewer Overflow	v -	V

Xypex Applications

Rehabilitation – Sewage Systems

STRUCTURE	XYPEX COATING	MEGAMIX I & II	XYPEX PATCH 'N PLUG
Manholes	V	V	V
Sewer Pipe	V	4	V
Pump/Lift Station	4	V	V
Sewer Overflow	V	4	V

Xypex Applications

New Construction – Wastewater Treatment Plants

STRUCTURE	XYPEX ADMIX	XYPEX COATING	XYPEX DS1/DS2 *floor
Manholes	V	V	
Precast Pipes	V	V	
Lift Stations			
Head Works	V		
Grit Chamber	V		
Primary Clarifier	V		
Aeration Tank	V		
Secondary Clarifier	V	V	•
Digester	V	V	V
Disinfection	V	V	V

Xypex Applications

Rehabilitation – Wastewater Treatment Plants

STRUCTURE	XYPEX COATING	MEGAMIX I	MEGAMIX II	PATCH'N PLUG
Manholes	v .	v .	V	V_
Precast Pipes	v .	V	V	V
Lift Stations	v .	v .	v .	V
Head Works	V	V	V	V
Grit Chamber	v .	V	v .	V/
Primary Clarifier	V	V	V	V
Aeration Tank	v .	v .	v .	V
Secondary Clarifier	V	V	V	V
Digester	V	V	V	v
Disinfection	V	V	V	V

Summary of Xypex

- Waterproofs and protects concrete against acidic attack.
- Heals cracks up to 0.4 mm and reactivates any time a crack occurs.
- Permanent, integral solution for new systems and rehabilitation.
- Advantages of barrier systems, with none of the disadvantages.
- **Proven worldwide** through thousands of projects successfully completed and independent testing.

Summary of Xypex

Extends service life

amortizing investments over a longer period.

Reduces maintenance costs

allowing for significant savings.

- Makes concrete more environmentally friendly amortizing it's footprint over a longer period.
- Adds value to owners, engineers and contractors *all around the globe.*

XYPEX Projects

XAÇEX.

Pipe

Genesee County Sewage System, USA

- Precast sewer line
- Waterproofing
- Chemical resistance
- Xypex Admix C-1000, Admix C-500
- 5,100 m (17,000 ft.)

Pipe Frasher Pipe Rehabilitation, USA

- Precast pipe
- 1.5m (5 ft) diameter
- 670m (2,200 ft)
- Surface deterioration
- Rehabilitation
- Xypex Concentrate, Megamix I

Tunnel

Estoril Sewage System, Portugal

- Sewage tunnels
- New construction
- Hydrostatic pressure
- Chemical resistance
- 21 km (12 miles)
- Xypex Concentrate, Modified
- Spray application onto gunite surface

XAÇEX.

Manholes

Terrebonne Sewage System, Louisiana, USA

- 1999
- Precast manholes
- Hydrostatic pressure, chemical attack
- Xypex Admix C-1000 Red
- 2010 inspection: Xypex-treated manholes in excellent condition.

Manholes

Hrusevje Manhole Repairs, Slovenia

- Repair
- Hydrostatic pressure, chemical protection
- Xypex Concentrate, Patch'n Plug
- Joints, leaks
- 10 manholes protected total of 120 sq. m.

XAÇEX.

Lift/Pump Station Santa Rosa Sewage System, USA

- Precast pump
 station structures
- Xypex Admix

Lift/Pump Station

Erd Wastewater Treatment Plant, Hungary

After

- Hydrostatic pressure, chemical resistance
- Xypex Concentrate, Patch'n Plug
- Sealing of pipe penetration

Siphon

La Crosse Sanitary Siphon, Wisconsin, USA

- Repair
- 1936 Structure
- 3.5 mgd siphon
- 75mm-100mm (3" 4") loss of cover
- Hydrogen Sulfide, Microbial Induced Corrosion (MIC)
- Original spec. PU coating with 5year warranty
- Concrete too wet to receive liner

Siphon La Crosse Sanitary Siphon, USA

- Water-based abrasive cleaning
- Some re-bar replacement
- Xypex Megamix II
- 144 sq.m (1,600 sq. ft.)

XAÇEX.

Box Culverts

Boston Sewage System, USA

- Boston City sewer
 upgrade
- Precast box culverts
- 6m (20 ft) below grade
- Xypex Admix C-500

XAÇEX.

Overflow / Interceptor Eastern Delta Sewer Interceptor, USA

- New construction
- Sewer interceptor, control chamber
- Xypex Admix C-1000

Septic Tanks ABC Precast Septic Holding Tanks, Canada

- Precast
- 320 litre (1,200gallon) septic holding tanks
- Xypex Admix C-500 (3% dosage for resistance to chemical attack)

Settling Tanks

Elektrenai Waste Oil Settling Tanks, Lithuania

- Industrial Wastewater
- Repair
- Hydrostatic pressure, chemical protection
- Xypex Concentrate, Modified

Sedimentation

Szarvas Bio-filtration Basin, Hungary

- Hydrostatic pressure
- Basin walls/floor
- Xypex Concentrate

Anaerobic Digesters

Bailonggang Water Purification Plant, China

- Hydrostatic pressure
- Basin walls/floor
- Xypex Concentrate (1,110 kg)

Anaerobic Digesters

Bailonggang Water Purification Plant, China

- Chemical resistance
- Xypex Concentrate
- May 2010

- 8 pre-stressed sludge digesters
- 25m (75ft) x 44m (132ft), 12m (36ft) below grade

Anaerobic Digesters

Ramos Arizpe Wastewater Treatment Plant, **Mexico**

- Repair of digester tanks
- Xypex Patch 'n Plug, Concentrate

Biogas Plant Biogas Plant in Tartu, Estonia

- New-build repairs
- Reservoir
- Xypex Patch'n Plug, Concentrate
- 1,860 m²

Silt Deposition Reservoirs, Lithuania

- Chemical resistance and waterproofing
- Xypex Concentrate, Modified

Wastewater Treatment Plant

Alegria Wastewater Treatment Plant, Brazil

- New construction
- Hydrostatic pressure
- Chemical resistance
- Xypex Concentrate, Modified
- 35,000 sq.m (378,000 sq.ft) foundation walls and slabs

XYPEX Wastewater Treatment Plant Fukashiba Sewage Treatment Plant, Japan

- Repair
- Xypex Megamix II

Wastewater Treatment Plant

Novgorod Wastewater Treatment Plant, Russia

- Repair
- Xypex Concentrate, Modified, Patch 'n Plug

XAÇEX.

 7,080 sq. m (76,208 sq. ft) total application area + 1,100 m (3,600 ft) of joints

Wastewater JAPAC Wastewater Treatment Plant, Mexico

- Rehabilitation
- Xypex Patch'n Plug, Concentrate

Are there any questions?

Xypex Chemical Corporation • Tel: (604) 273-5265 • www.xypex.com

Xypex is a registered trademark of Xypex Chemical Corporation Copyright © 2011 • Xypex Chemical Corporation

The following slides include:

- Proven Performance
- Products
- Application and Installation Methods

Proven Performance

Independent Testing

Xypex has been independently tested worldwide for these characteristics

- Permeability
- Chemical Resistance
 - Acids
 - Sulfates
- Carbonation
- Compressive Strength
- Crack Sealing
- Scanning Electron Microscopy (SEM)

Permeability

Permeability

Taywood Engineering, CRDC C48-73, Singapore

Sample Reference		Control Concrete					Xypex-treated Concrete						
Date of Cast		22/01/97					14/01/97						
Date of Coring		30/01/97			20/02/97			22/01/97			2/12/97		
Age of Curing (days)		8			29		8			29			
Specimen Size (mm)		150 x 50				150 x 50							
Specimen Reference		1	2	3	1	2	3	1	2	3	1	2	3
Volume of water mo through the sample	oving (mL):												
At 1 bar on	1 st day	0	0	0	0	0	0	0	0	0	0	0	0
At 2.4 bar on	2 nd day	0	0	0	0	0	0	0	0	0	0	0	0
At 4.2 bar on	3 rd day	0	0	0	0	0	0	0	0	0	0	0	0
At 7.0 bar on	4 th day	0	0	0	0	0	0	0	0	0	0	0	0
	5 th day	10	0	4	10	0	0	0	0	0	0	0	0
	6 th day	30	20	25	74	13	0	0	0	0	0	0	0
	7 th day	65	20	60	78	20	0	0	0	0	0	0	0
	8 th day	70	30	60	45	10	0	0	0	0	0	0	0
	9 th day	70	30	60	35	10	0	0	0	0	0	0	0
	10 th day	70	30	60	46	10	0	0	0	0	0	0	0

Permeability

DIN 1048, Bautest, Germany, **Treated**

Untreated

Untreated control sample had average 84 mm of water penetration. Xypex treated control sample had average 6 mm of water penetration. Hydrostatic pressure equivalent to 224 ft of hydraulic head .

XYSEX.

Chemical Resistance

Sulfuric Acid Exposure

Chemical Durability, Iwate University, Tokyo, Japan

The typical means of evaluating the ability of the Xypex treatment to provide chemical resistance include: measuring amount of mass loss, length change or relative dynamic modulus of elasticity.

UNTREATED

Before Soaking

10 Weeks

Chemical Resistance

Protects concrete in acidic conditions

Sirindhorn International Institute of Technology, Thammasat University, Bangkok

Mortar (0.50 w/c)
ASTM C-267
5% sulphuric acid for 12 weeks (pH<0.54)
Mass loss of Xypex treated sample 48% less for OPC mortar and 53% less for 30% fly-ash mix

OPC

Submersion Time (weeks)

XY SEX.

Chemical Resistance

Sulfuric Acid Exposure

Aviles Engineering, Texas, USA

•40 day cure acid comparison test in 7% H₂(SO₄)
•Control, 3%, 5% and 7% Admix (Regular Grade)
•Curing periods were varied to determine effects

Chemical Resistance

Protects concrete in sulphate conditions

Betonconsult, Building Materials Testing Laboratory, Prague, Czech Republic.

- C30/37 concrete cubes
- 36,000 mg/l sulphate solution, 4 months
 Mass loss for Xypex treated samples 5-50 g/m²
 Mass loss for control samples 4,860 g/m²
 Xypex sample achieved same sulphate resistance levels as XA3

Control

Xypex treated

CHEM-132

XYJEX.

Chemical Resistance

Ammonium Sulfate Exposure

Taywood Engineering, Sydney, Australia

1 molar - 132 g/l
Six mixes: control, low slag cement, silica fume, high slag cement, silica fume cement, Xypex Admix

Results of Exposure Trials							
	MIX DESIGNATION						
Component	GB80	GP	LH	SR	SF	ADMIX	
Total Percentage Weight Loss	14.60	12.00	28.40	7.20	8.80	8.80	
Loss Percentage Length Change	0.01	—	0.12	0.00	-0.01	-0.02	

Note 1: Total Percentage Weight Loss is given for 25 weeks exposure. Note 2: Percentage Length Change is given as the change compared to the GP mix, at 25 weeks.

XAÇEX.

Carbonation

Resistance to carbonation

Slovenska Akademia Vied, Institute of Construction and Architecture (Bratislava 2002)

XY SEX.

Compressive Strength

Kleinfelder Laboratories, San Francisco, California, USA

Crack Sealing Test

The Construction Bureau of Chubu District, Japanese Ministry of Construction (Sept 1996)

Photo 1: Evidence of cracking in concrete on underside of the deck slab

Crack Sealing Test

Xypex Testing

Xypex products have been extensively and successfully tested by leading, independent scientific laboratories throughout the world for durability permeability and chemical resistance.

Potable Water Approvals

Department of Water and Cleanliness

Potable Water Approvals

EPA CHEEPA VIRGINIA DEPARTMENT OF HEALTH

🎌 Helsedirektoratet

XYPEX Products

Coating

- Concentrate
- Modified

Spray Applied

Brush Applied

Coating

Crystalline waterproofing chemicals can penetrate to a depth of 12".

Coating

- Does not require costly surface priming and leveling
- Does not require a dry surface
- Sealing, lapping or finishing is not needed
- Can be applied to both positive and negative side
- No protection required during back-filling
- Can be applied in confined spaces no VOCs
- Crystalline waterproofing penetrates deeply into the concrete substrate and becomes an integral part of the concrete.
- Does not depend on surface adhesion like barrier systems and does not have seams that come apart.
- Permanent, one-time only treatment

Admixture

Dry batch Central Mix

Pre-cast

- Admix C-500
- Admix C-1000
- Admix C-2000

Also available in NF (no fines) and non-soluble bags.

Admixture

Ready-mix Concrete

Precast Concrete

Shotcrete

Admixture

Admixture

Admix Type	For Normal Waterproofing and Durability	For Extra Chemical Protection or Special Applications
C-500 C-1000 C-2000*	2%	3%
C-500 NF C-1000 NF C-2000 NF*	1%	1.5%

Based on % of cement or cement + pozzolan/slag depending on mix design

XYSEX.

Admixture

May be used in conjunction with other admixtures

- Set retarders
- Water reducer
- Superplasticizers
- Air-entrainers

Trial Batching is always recommended

XYSEX.

Admixture

- Added at time of batching.
- Minimizes installation costs
- Takes a trade off the job site
- Shortens construction schedule

Patching & Repair

- Patch'n Plug
- Megamix I and II
- FCM 80
- Xycrylic Admix
- Gamma Cure

Patching & Repair

Patch 'n Plug

- Fast setting
- For crack repair and mortar joints with flowing water

XY SEX.

Patching & Repair

Megamix I and II

- Xypex Crystalline Technology
- Excellent adhesion and bond
- Low shrinkage, fiber reinforced
- Low chloride penetration
- Chemical durability
- High strength
- Designed for either structural repair or protective coating

Raccoon Creak Water Treatment Plant

Patching & Repair

Megamix I

- A thin parge coat for waterproofing or resurfacing vertical masonry or concrete surfaces or as a cap coat for Xypex Concentrate.
- Lining of swimming pools, tunnels and tanks.
- Finished surface or good for painting.
- Applied by brush or notch trowel. Rapid set.
- Application thickness
 1.5 mm (1/16") to 10 mm (3.8").

Patching & Repair

Megamix II

- High strength concrete repair mortar and a structural chemical resistant cement liner for horizontal and vertical applications.
- Application thickness 10 mm (3.8") to 50 mm (2").
- For water tanks and reservoirs, concrete pipes, manholes and vaults, tunnels, bridges and marine structures.
- Low pressure sprayed or trowel applied.

Application & Installation Methods

How to Use Xypex

Xypex Coating and accessory products are used for:

•For new construction where a coating method is preferred

•The repair of defects in concrete structures

•The rehabilitation of deteriorated structures from exposure to aggressive environments Xypex Admix products are utilized for:

- New construction
- •Cast-in-place

Precast or shotcrete installations

1. Surface Preparation

Examination

The surface must be free of foreign substances and should be examined for cracks and other defects that need to be repaired before application of Xypex.

Preparation

Water blast to clean and open the surface of the concrete and remove damaged substrate material.

XAÇEX.

2. Structural Repair

Rout out the cracks with pneumatic chipping gun to form a "U" shaped slot or groove.

2. Structural Repair

Apply a slurry coat of Xypex Concentrate to entire slot.

2. Structural Repair

Fill slot to surface with Concentrate Dry-Pac.

2. Structural Repair

Compress the Dry-Pac with pneumatic packing hammer followed by a slurry coat of Concentrate.

2. Structural Repair

Patching Defects in Concrete Where There is an Active Leak

Seepage should be stopped using Xypex Patch ' Plug prior to the application of the Xypex repair system. Where there is an active leak, a bleeder hose may be used to redirect the water while Patch'n Plug is applied.

2. Structural Repair

Installing Patch'n Plug Against the Flow of Water

XAÇEX.

3. Wetting Concrete

Wet down concrete surface with water to achieve a saturated substrate and damp surface prior to the Xypex coating application.

XYSEX.

4. Mixing for Slurry Coat

Mix 5 parts Xypex powder with 2 parts clean water to a creamy consistency (like a pancake batter).

XAÇEX.

5. Applying Xypex

Apply Xypex with a brush or spray equipment to a uniform coating 1.5mm (1/16") thick. Where a second coat is required it should be applied after the first coat has reached an initial set but before it begins to dry.

6. Curing

Xypex applications must be kept damp for a minimum of 48 hrs. In most cases it is sufficient to spray the application with a light mist 3 times a day. It should also be protected against heavy rain or puddling of water. Xypex can also provide Gamma Cure for applications subject to harsh weather conditions.

